روشی مبتنی بر ماشین یادگیری سریع با هسته غیرخطی برای انتخاب نمونههای اولیه در یادگیری چندبرچسبه مقیاس بزرگ
نویسندگان
چکیده مقاله:
با وجود حجم عظیم محتوای چند رسانهای در وب، ذخیره سازی و بازیابی آنها با بکارگیری روشهای یادگیری موجود با محدودیت هایی از جمله کمبود حافظه مواجه شده است. تاثیر گذاری محدودیتهای مد نظر در روشهای یادگیری دارای مرحله آموزش مانند ماشین بردار پشتیبان (SVM) و شبکه های عصبی تا جایی است که امکان بکارگیری این روشها در کاربردهای مقیاس بزرگ تقریبا غیرممکن است. روش ماشین یادگیری سریع مبتنی بر هسته غیرخطی (KELM) یکی از روشهای قدرتمند ارائه شده در حوزه یادگیری ماشین است. اساس مرحله یادگیری در این روش مبتنی بر ساخت ماتریس هستهی نمونههای برچسبدار و محاسبه معکوس آن میباشد. از اینرو، بکارگیری این روش در محیطهای مقیاس بزرگ با وجود تعداد زیاد نمونههای برچسب دار امکانپذیر نیست. در این پژوهش به منظور حل مشکل مطرح شده در بکارگیری KELM در کاربردهای مقیاس بزرگ، روشی مبتنی بر انتخاب نمونههای اولیه با بهرهگیری از KELM در مقیاس کوچک همسایگی هر نمونه آموزش ارائه شده است. با بکارگیری روش انتخاب نمونههای اولیه ارائه شده، حجم مجموعه آموزش کاهش مییابد. بنابراین امکان استفاده از روش یادگیری KELM در کاربردهای مقیاس بزرگ فراهم میشود. از آنجایی که کاربردهای حوزه چند رسانه ای وب به صورت چندبرچسبه میباشند، روش ارائه شده در انتخاب نمونههای اولیه، مبتنی بر کاربردهای چندبرچسبه مانند شرحگذاری خودکار تصاویر است. نتایج آزمایشهای تجربی بر روی دادگان چندبرچسبه مقیاس بزرگ NUS-WIDE و نسخههای آن مانندObject، Scene و Lite بیانگر کارایی روش ارائه شده در حل محدودیتهای بکارگیری KELM در کاربردهای چندبرچسبه مقیاس بزرگ با انتخاب نمونههای اولیه دارد.
منابع مشابه
روشی مبتنی بر ماشین یادگیری سریع با هسته غیرخطی برای انتخاب نمونه های اولیه در یادگیری چندبرچسبه مقیاس بزرگ
با وجود حجم عظیم محتوای چند رسانه ای در وب، ذخیره سازی و بازیابی آنها با بکارگیری روش های یادگیری موجود با محدودیت هایی از جمله کمبود حافظه مواجه شده است. تاثیر گذاری محدودیت های مد نظر در روش های یادگیری دارای مرحله آموزش مانند ماشین بردار پشتیبان (svm) و شبکه های عصبی تا جایی است که امکان بکارگیری این روش ها در کاربرد های مقیاس بزرگ تقریبا غیر ممکن است. روش ماشین یادگیری سریع مبتنی بر هسته غی...
متن کاملپیشبینی ورشکستگی با مدل یادگیری ماشین سریع مبتنی بر کرنلِ بهینهشده با الگوریتم گرگ خاکستری
هدف: در عصر حاضر، کسبوکارها به اندازهای توسعه یافتهاند که برای بقا در عرصه رقابت، به مدیریت صحیح منابع و مصارف خود نیازمندند؛ چراکه بازار رقابتی انعطافپذیری شرکتها را بهشدت کاهش داده است و این عامل باعث شده که آنها در وضعیتهای مختلف اقتصادی توانایی عکسالعمل مناسب را نداشته باشند و از چرخه رقابت خارج شده و با خطر ورشکستگی مواجه شوند. بنابراین در این پژوهش تلاش شده است که بهمنظور پیشگیری...
متن کاملمروری بر روشهای تخمین هزینه نرمافزار مبتنی بر یادگیری ماشین
Software project management software is the most important activity in software development, because it contains the whole software development process, from beginning to end. Software cost estimation is a challenge task in the software project management. It is an old activity in computer industry from 1940s and has been developed many times. Effort, only covers part of the cost of a software ...
متن کاملروشی جدید برای بهبود هوشمند یادگیری الکترونیکی
یادگیری الکترونیکی با از بین بردن محدودیت زمان و مکان کلاس حضوری، کاربرد گستردهای در ارتباط بین دانشجو و آموزگار پیدا کرده است. از سوی دیگر مؤلفههای هوشمندی مانند فراهم ساختن بازخورد و راهنمایی برای دانشجو کیفیت آموزش را افزایش میدهد، اما روشهای کنونی هوشمندسازی هزینه پیادهسازی بالایی دارند. این پژوهش روشی جدید برای هوشمندی یادگیری الکترونیکی با هزینه پایین معرفی مینماید. هوشمندی در دو مؤ...
متن کاملارائه روشی مبتنی بر آنتولوژی و یادگیری ماشین برای کلاس بندی احساسات
نظرکاوی یا آنالیز احساسات عمل کاویدن برخوردها، نظرات و احساس¬ها از متن و گفتگو به کمک پردازش زبان طبیعی و بازیابی اطلاعات می¬باشد. در این مطالعه یک روش ترکیبی برای کلاس¬بندی احساسات ارائه شده است. روش پیشنهادی از دو بخش پیش¬پردازش و کلاس¬بندی تشکیل شده است. در بخش پیش¬پردازش نظرات به عنوان ورودی وارد شده¬اند، روی آنها تگ¬گذاری ادات سخن انجام شده و سپس قیود، صفات و افعال از نظر استخراج شده است. ...
پالایش شرح گذاری مجموعه تصاویر با مقیاس بزرگ با یادگیری انتقالی در شبکه عصبی کانولوشنال عمیق
فرآیند پالایش شرح گذاری تصاویر، رویکردی موثر در بهبود بازیابی تصاویر مبتنی بر برچسب میباشد. در شبکه های اجتماعی و موتورهای جستجو بسیاری از تصاویر دارای تگ های مبهم، ناقص و بی ارتباط با محتوا هستند. وجود این تگ های غیرقابل اعتماد، موجب کاهش دقت بازیابی تصاویر می شود. از اینرو در دهه اخیر، الگوریتم هایی با عنوان پالایش تگ (TR) مطرح شدهاند که به رفع نویز و غنیسازی برچسبهای تصاویر میپر...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 2
صفحات 39- 57
تاریخ انتشار 2016-11-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023